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K, E. Dzhaugashtin

Inzhenerno-Fizicheskii Zhurnal, Vol. 14, No. 6, pp. 1006-1009, 1968

UDC 532.522

A numerical solution of the problem of self-similar development of
a jet of viscous incompressible fluid moving along a porous wall is
obtained within the framework of laminar boundary layer theory.

The problem of the propagation of a laminar semi-
bounded jet of incompressible fluid along a porous
wall has been solved numerically on the assumption
that the variation of the velocity components at the
wall satisfies the condition of self-similar develop-
ment of the jet, Similar problems were solved in [1]
and [2]. In [1] the solution was obtained for a constant
value of the transverse velocity component at the
wall, In [2] the problem was solved for a power law
of variation of the transverse velocity component
along the wall, but the relation between the self-
similar solutions obtained and the actual velocity field
remained undetermined.

Our object hasbeento study the effect of the suction
or injection velocity on the attenuation of the jet and
to determine the friction stresses at the wall and the
location of the velocity maximum, The numerical calcu-
lations were carried out on an EMU-10 analog computer.

The starting equations of the problem are the lam-
inar boundary layer equations

du ou ou du do

U—tv—=w , —+-——=0 1
ox + dy oyt ax + dy (1)

with the boundary conditions
u=u, v=v, npg y=70,
u=0 mpn y= -+ oo, @)
where the subscript w denotes values of the velocity
components at the wall, We find the solution of Egs,
(1) in the following form:
a—I

u=u,F ¢, u,=A4% ¢=Bx’y. (3)

These relations also determine the lé,w of variation
of the velocity components at the wall:

a—I1
uy = A% FY0); v, = —;Lx z EJZF—!F(O). (4)

After transformations of the variables in the start-
ing equations (1), we obtain

F” 4 2(@+ ) FF" — 4a F? =0, (5)

where the unknown function F must satisfy the bound-
ary conditions

F=FQ),F =F () at =0, FF=0 at ¢ =+ co. (6)
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The jet attenuation constant o was determined by
integrating Eq. (5). For this purpose we assigned
values of F(0) and F'(0) at the wall. We then varied
the value of F"(0) so that the boundary conditions
at infinity sz) =0 and the equation Fiyax =1 were
satisfied for the given value of o,

For two particular values of o, Eq, (5) is inte-
grable in quadratures. The value a = —0,5 corresponds
to the physically unreal case of suction from the
boundary layer in the direction of motion of the fluid
and, hence, is of interest from the standpoint of a
check on the accuracy of the machine solution. For

= ~0,5 the solution has the form

2

F7ep 4 5 (F/s —F&)) =0,

o= 1 ln[( F+VFFoy+ F(w )X
2F () FO) +VF O Fiw) + Fro

X(I/F(w)——l’F(O) )2]+

VFe —VF
+ V3 {arctg 2VF —VFe) _
V F(cu) 14 3F(eo)
—_— arCtg 2' F(o) + ' F(“) }. (7)
V 3F ()

The second value, o =~1/8, admitting a solution
in quadratures, corresponds to a jet with a constant
value of the momentum flow along the wall, In this
case, the friction losses are compensated by the com-
ponent of the momentum flow introduced with the
injected mass of fluid in the direction of motion, We
then have

2 3

i F=75+

+h ("/ig—q)—arcth—g'—F(O) ) (8)

Comparison of solutions (7) and (8) with the machine
solutions at corresponding values of the constant o
shows that the maximum error in calculating the
functions F and F' and the values of «, etc., does not
exceed 5%.

In connection with the determination of the con-
stants A and B, we note that in deriving Eq. (5) it was
agssumed that

A=4vB (9)
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Fig. 1, Attenuation constant o as a function

of injection velocity.
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Fig. 2. Friction as a function of injection
velocity.
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Fig. 3. Location of velocity maximum
as a function of injection velocity,
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Fig. 4. Attenuation constant a (2),
F"(0) (1), and gmax (3) asfunctions
of the suction velocity F(0),

In the presence of power transformations of (3), an
integral of the type
ol

S=f{u™® dy = const >0 (10

S8

does not vary along the plate [1]. Using relations
(9) and (10) we determine A and B:

a—1 20

4| [E @™ do
1o

207 v (11)
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We proceed to discuss briefly the results presented
in Figs, 1-4.

An increase inthe longitudinal component of the in-
jection velocity F'(0) reduces the attenuation constant
of the jet. An increase in the transverse injection
velocity (proportional to F(0)) has a similar effect up
to a certain point, beyond which a further slight in-
crease in F(0) leads to a sharp increase in ¢« (Fig. 1).
It is clear from Fig. 2 that an increase in the longi-
tudinal and transverse components of the injection
velocity leads to a decrease in the shear stress at the

wall:
du ‘ /A a-;rl "

The rate of fall of F"(0) with increase in F(0)
is greater at lower values of F'(0).

Naturally, as the normal component of the injection
velocity (~F(0)) increases, the location of the velocity
maximum moves away from the wall (Fig. 3). At large
values of the longitudinal velocity component F'(0) the
change is only slight. An increase in F'(0) at constant
F(0) brings ¢max closer to the wall,

When fluid is sucked from the boundary layer, an
increase in the suction rate F(0) leads to an increase
in @ and the friction at the wall (Fig. 4). The velocity
maximum in the cross section of the jet is displaced
toward the wall,
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NOTATION

X, ¥, and z are coordinates; u and v are longitu~
dinal and transverse velocity components; F is the
dimensionless velocity profile; ¢ is the dimensionless
coordinate; 7 is the shear stress; A, B, o, 8, and S
are constants; v and p are the kinematic and dynamic
viscosity; p is the density. Subscripts: w refers to a
value of variables at the wall; m, to a maximum value,
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